Mean convergence of Hermite and Laguerre series. I

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rate of Convergence of Hermite Function Series

Let a > 0 be the least upper bound of y for which f(z) 0(e-°My) for some positive constant q as |z| -+ o» on the real axis. It is then proved that at least an infinite subsequence of the coefficients \an} in oo f(z) = e-z2/2 £ anHn(z), n=0 where the Hn are the normalized Hermite polynomials, must satisfy certain lower bounds. The theorems show two striking facts. First, the convergence rate of ...

متن کامل

Mean Convergence of Vector–valued Walsh Series

Given any Banach space X, let L X 2 denote the Banach space of all measurable functions f : [0, 1] → X for which f 2 := 1 0 f (t) 2 dt

متن کامل

Convergence of split-step generalized-Laguerre-Fourier-Hermite methods for Gross-Pitaevskii equations with rotation term

A convergence analysis for time-splitting generalized-Laguerre– Fourier–Hermite pseudo-spectral methods applied to time-dependent Gross– Pitaevskii equations with rotation term is given. The space discretization combines the generalized-Laguerre–Fourier spectral method with respect to the (x, y)-variables and the Hermite spectral method with respect to the zdirection. For the time integration e...

متن کامل

Mean and Almost Everywhere Convergence of Fourier-neumann Series

Let Jμ denote the Bessel function of order μ. The functions xJα+β+2n+1(x 1/2), n = 0, 1, 2, . . . , form an orthogonal system in L2((0,∞), xα+βdx) when α+ β > −1. In this paper we analyze the range of p, α and β for which the Fourier series with respect to this system converges in the Lp((0,∞), xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of ...

متن کامل

Eigenvalues of Hermite and Laguerre ensembles: Large Beta Asymptotics

In this paper we examine the zero and first order eigenvalue fluctuations for the β-Hermite and β-Laguerre ensembles, using the matrix models we described in [5], in the limit as β → ∞. We find that the fluctuations are described by Gaussians of variance O(1/β), centered at the roots of a corresponding Hermite (Laguerre) polynomial. We also show that the approximation is very good, even for sma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1970

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1970-99933-9